333 research outputs found

    Acquisition and functional consequences of social knowledge in macaques

    Get PDF
    To manoeuvre in complex societies, it is beneficial to acquire knowledge about the social relationships existing among group mates, so as to better predict their behaviour. Although such knowledge has been firmly established in a variety of animal taxa, how animals acquire such knowledge, as well as its functional significance, remains poorly understood. In order to understand how primates acquire and use their social knowledge, we studied kin-biased redirected aggression in Japanese macaques (Macaca fuscata) relying on a large database of over 15 000 aggressive episodes. Confirming previous research, macaques redirected aggression preferentially to the kin of their aggressor. An analysis that controlled for the rate of affiliation between aggressors and targets of redirection showed that macaques identified the relatives of group mates on the basis of the frequency of their ongoing associations. By contrast, having observed group mates interact with their mother as infants did not increase the monkeys’ success in correctly identifying kin relationships among third parties. Inter-individual variation in the successful identification of the kin of aggressors and in redirecting aggression accordingly translated into differences in the amount of aggression received, highlighting a selective advantage for those individuals that were better able to acquire and use social knowledge

    Variation in the Meaning of Alarm Calls in Verreaux’s and Coquerel’s Sifakas (Propithecus verreauxi, P. coquereli)

    Get PDF
    The comprehension and usage of primate alarm calls appear to be influenced by social learning. Thus, alarm calls provide flexible behavioral mechanisms that may allow animals to develop appropriate responses to locally present predators. To study this potential flexibility, we compared the usage and function of 3 alarm calls common to 2 closely related sifaka species (Propithecus verreauxi and P. coquereli), in each of 2 different populations with different sets of predators. Playback studies revealed that both species in both of their respective populations emitted roaring barks in response to raptors, and playbacks of this call elicited a specific anti-raptor response (look up and climb down). However, in Verreaux’s sifakas, tchi-faks elicited anti-terrestrial predator responses (look down, climb up) in the population with a higher potential predation threat by terrestrial predators, whereas tchi-faks in the other population were associated with nonspecific flight responses. In both populations of Coquerel’s sifakas, tchi-fak playbacks elicited anti-terrestrial predator responses. More strikingly, Verreaux’s sifakas exhibited anti-terrestrial predator responses after playbacks of growls in the population with a higher threat of predation by terrestrial predators, whereas Coquerel’s sifakas in the raptor-dominated habitat seemed to associate growls with a threat by raptors; the 2 other populations of each species associated a mild disturbance with growls. We interpret this differential comprehension and usage of alarm calls as the result of social learning processes that caused changes in signal content in response to changes in the set of predators to which these populations have been exposed since they last shared a common ancestor

    The biological origin of linguistic diversity

    Get PDF
    In contrast with animal communication systems, diversity is characteristic of almost every aspect of human language. Languages variously employ tones, clicks, or manual signs to signal differences in meaning; some languages lack the noun-verb distinction (e.g., Straits Salish), whereas others have a proliferation of fine-grained syntactic categories (e.g., Tzeltal); and some languages do without morphology (e.g., Mandarin), while others pack a whole sentence into a single word (e.g., Cayuga). A challenge for evolutionary biology is to reconcile the diversity of languages with the high degree of biological uniformity of their speakers. Here, we model processes of language change and geographical dispersion and find a consistent pressure for flexible learning, irrespective of the language being spoken. This pressure arises because flexible learners can best cope with the observed high rates of linguistic change associated with divergent cultural evolution following human migration. Thus, rather than genetic adaptations for specific aspects of language, such as recursion, the coevolution of genes and fast-changing linguistic structure provides the biological basis for linguistic diversity. Only biological adaptations for flexible learning combined with cultural evolution can explain how each child has the potential to learn any human language

    Visualizing sound emission of elephant vocalizations: evidence for two rumble production types

    Get PDF
    Recent comparative data reveal that formant frequencies are cues to body size in animals, due to a close relationship between formant frequency spacing, vocal tract length and overall body size. Accordingly, intriguing morphological adaptations to elongate the vocal tract in order to lower formants occur in several species, with the size exaggeration hypothesis being proposed to justify most of these observations. While the elephant trunk is strongly implicated to account for the low formants of elephant rumbles, it is unknown whether elephants emit these vocalizations exclusively through the trunk, or whether the mouth is also involved in rumble production. In this study we used a sound visualization method (an acoustic camera) to record rumbles of five captive African elephants during spatial separation and subsequent bonding situations. Our results showed that the female elephants in our analysis produced two distinct types of rumble vocalizations based on vocal path differences: a nasally- and an orally-emitted rumble. Interestingly, nasal rumbles predominated during contact calling, whereas oral rumbles were mainly produced in bonding situations. In addition, nasal and oral rumbles varied considerably in their acoustic structure. In particular, the values of the first two formants reflected the estimated lengths of the vocal paths, corresponding to a vocal tract length of around 2 meters for nasal, and around 0.7 meters for oral rumbles. These results suggest that African elephants may be switching vocal paths to actively vary vocal tract length (with considerable variation in formants) according to context, and call for further research investigating the function of formant modulation in elephant vocalizations. Furthermore, by confirming the use of the elephant trunk in long distance rumble production, our findings provide an explanation for the extremely low formants in these calls, and may also indicate that formant lowering functions to increase call propagation distances in this species'

    Cooperation, coalition and alliances

    Get PDF

    Production and perception of situationally variable alarm calls in wild tufted capuchin monkeys (Cebus apella nigritus)

    Get PDF
    Many mammalian and avian species produce conspicuous vocalizations upon encountering a predator, but vary their calling based on risk urgency and/or predator type. Calls falling into the latter category are termed “functionally referential” if they also elicit predator-appropriate reactions in listeners. Functionally referential alarm calling has been well documented in a number of Old World monkeys and lemurs, but evidence among Neotropical primates is limited. This study investigates the alarm call system of tufted capuchin monkeys (Cebus apella nigritus) by examining responses to predator and snake decoys encountered at various distances (reflecting differences in risk urgency). Observations in natural situations were conducted to determine if predator-associated calls were given in additional contexts. Results indicate the use of three call types. “Barks” are elicited exclusively by aerial threats, but the call most commonly given to terrestrial threats (the “hiccup”) is given in nonpredatory contexts. The rate in which this latter call is produced reflects risk urgency. Playbacks of these two call types indicate that each elicits appropriate antipredator behaviors. The third call type, the “peep,” seems to be specific to terrestrial threats, but it is unknown if the call elicits predator-specific responses. “Barks” are thus functionally referential aerial predator calls, while “hiccups” are better seen as generalized disturbance calls which reflect risk urgency. Further evidence is needed to draw conclusions regarding the “peep.” These results add to the evidence that functionally referential aerial predator alarm calls are ubiquitous in primates, but that noncatarrhine primates use generalized disturbance calls in response to terrestrial threats

    Roaring high and low: composition and possible functions of the Iberian stag's vocal repertoire

    Get PDF
    We provide a detailed description of the rutting vocalisations of free-ranging male Iberian deer (Cervus elaphus hispanicus, Hilzheimer 1909), a geographically isolated and morphologically differentiated subspecies of red deer Cervus elaphus. We combine spectrographic examinations, spectral analyses and automated classifications to identify different call types, and compare the composition of the vocal repertoire with that of other red deer subspecies. Iberian stags give bouts of roars (and more rarely, short series of barks) that are typically composed of two different types of calls. Long Common Roars are mostly given at the beginning or at the end of the bout, and are characterised by a high fundamental frequency (F0) resulting in poorly defined formant frequencies but a relatively high amplitude. In contrast, Short Common Roars are typically given in the middle or at the end of the bout, and are characterised by a lower F0 resulting in relatively well defined vocal tract resonances, but low amplitude. While we did not identify entirely Harsh Roars (as described in the Scottish red deer subspecies (Cervus elaphus scoticus), a small percentage of Long Common Roars contained segments of deterministic chaos. We suggest that the evolution of two clearly distinct types of Common Roars may reflect divergent selection pressures favouring either vocal efficiency in high pitched roars or the communication of body size in low-pitched, high spectral density roars highlighting vocal tract resonances. The clear divergence of the Iberian red deer vocal repertoire from those of other documented European red deer populations reinforces the status of this geographical variant as a distinct subspecies

    Chimpanzees modify intentional gestures to coordinate a search for hidden food

    Get PDF
    Humans routinely communicate to coordinate their activities, persisting and elaborating signals to pursue goals that cannot be accomplished individually. Communicative persistence is associated with complex cognitive skills such as intentionality, because interactants modify their communication in response to another's understanding of their meaning. Here we show that two language-trained chimpanzees effectively use intentional gestures to coordinate with an experimentally naive human to retrieve hidden food, providing some of the most compelling evidence to date for the role of communicative flexibility in successful coordination in nonhumans. Both chimpanzees (named Panzee and Sherman) increase the rate of nonindicative gestures when the experimenter approaches the location of the hidden food. Panzee also elaborates her gestures in relation to the experimenter's pointing, which enables her to find food more effectively than Sherman. Communicative persistence facilitates effective communication during behavioural coordination and is likely to have been important in shaping language evolution

    Heterochrony and Cross-Species Intersensory Matching by Infant Vervet Monkeys

    Get PDF
    Understanding the evolutionary origins of a phenotype requires understanding the relationship between ontogenetic and phylogenetic processes. Human infants have been shown to undergo a process of perceptual narrowing during their first year of life, whereby their intersensory ability to match the faces and voices of another species declines as they get older. We investigated the evolutionary origins of this behavioral phenotype by examining whether or not this developmental process occurs in non-human primates as well.We tested the ability of infant vervet monkeys (Cercopithecus aethiops), ranging in age from 23 to 65 weeks, to match the faces and voices of another non-human primate species (the rhesus monkey, Macaca mulatta). Even though the vervets had no prior exposure to rhesus monkey faces and vocalizations, our findings show that infant vervets can, in fact, recognize the correspondence between rhesus monkey faces and voices (but indicate that they do so by looking at the non-matching face for a greater proportion of overall looking time), and can do so well beyond the age of perceptual narrowing in human infants. Our results further suggest that the pattern of matching by vervet monkeys is influenced by the emotional saliency of the Face+Voice combination. That is, although they looked at the non-matching screen for Face+Voice combinations, they switched to looking at the matching screen when the Voice was replaced with a complex tone of equal duration. Furthermore, an analysis of pupillary responses revealed that their pupils showed greater dilation when looking at the matching natural face/voice combination versus the face/tone combination.Because the infant vervets in the current study exhibited cross-species intersensory matching far later in development than do human infants, our findings suggest either that intersensory perceptual narrowing does not occur in Old World monkeys or that it occurs later in development. We argue that these findings reflect the faster rate of neural development in monkeys relative to humans and the resulting differential interaction of this factor with the effects of early experience

    Grooming Up the Hierarchy: The Exchange of Grooming and Rank-Related Benefits in a New World Primate

    Get PDF
    Seyfarth's model assumes that female primates derive rank-related benefits from higher-ranking females in exchange for grooming. As a consequence, the model predicts females prefer high-ranking females as grooming partners and compete for the opportunity to groom them. Therefore, allogrooming is expected to be directed up the dominance hierarchy and to occur more often between females with adjacent ranks. Although data from Old World primates generally support the model, studies on the relation between grooming and dominance rank in the New World genus Cebus have found conflicting results, showing considerable variability across groups and species. In this study, we investigated the pattern of grooming in wild tufted capuchin females (Cebus apella nigritus) in Iguazú National Park, Argentina by testing both the assumption (i.e., that females gain rank-related return benefits from grooming) and predictions (i.e., that females direct grooming up the dominance hierarchy and the majority of grooming occurs between females with adjacent ranks) of Seyfarth's model. Study subjects were 9 adult females belonging to a single group. Results showed that grooming was given in return for tolerance during naturally occurring feeding, a benefit that higher-ranking females can more easily grant. Female grooming was directed up the hierarchy and was given more often to partners with similar rank. These findings provide supporting evidence for both the assumption and predictions of Seyfarth's model and represent, more generally, the first evidence of reciprocal behavioural interchanges driven by rank-related benefits in New World female primates
    corecore